The potential energy of a particle varies with distance $x$ from a fixed origin as $U=\frac{A \sqrt{x}}{x^2+B}$, where $A$ and $B$ are dimensional constants then dimensional formula for $A B$ is
$\left[ ML ^{11/2} T ^{-2}\right]$
$\left[ ML ^{7 / 2} T ^{-2}\right]$
$\left[M^2 L^{9 / 2} T^{-2}\right]$
$\left[ ML ^{13 / 2} T ^{-3}\right]$
The equation of stationary wave is
$\mathrm{y}=2 \mathrm{a} \sin \left(\frac{2 \pi \mathrm{nt}}{\lambda}\right) \cos \left(\frac{2 \pi \mathrm{x}}{\lambda}\right)$
Which of the following is NOT correct
List $-I$ | List $-II$ | ||
$A$. | Coefficient of Viscosity | $I$. | $[M L^2T^{–2}]$ |
$B$. | Surface Tension | $II$. | $[M L^2T^{–1}]$ |
$C$. | Angular momentum | $III$. | $[M L^{-1}T^{–1}]$ |
$D$. | Rotational Kinetic energy | $IV$. | $[M L^0T^{–2}]$ |
Which of the following relation cannot be deduced using dimensional analysis? [the symbols have their usual meanings]
Choose the correct match
List I |
List II |
---|---|
$(i)$ Curie |
$(A)$ $ML{T^{ - 2}}$ |
$(ii)$ Light year |
$(B)$ $M$ |
$(iii)$ Dielectric strength |
$(C)$ Dimensionless |
$(iv)$ Atomic weight |
$(D)$ $T$ |
$(v)$ Decibel |
$(E)$ $M{L^2}{T^{ - 2}}$ |
$(F)$ $M{T^{ - 3}}$ |
|
$(G)$ ${T^{ - 1}}$ |
|
$(H)$ $L$ |
|
$(I)$ $ML{T^{ - 3}}{I^{ - 1}}$ |
|
$(J)$ $L{T^{ - 1}}$ |
A dimensionally consistent relation for the volume V of a liquid of coefficient of viscosity ' $\eta$ ' flowing per second, through a tube of radius $r$ and length / and having a pressure difference $P$ across its ends, is