The potential energy of a particle varies with distance $x$ from a fixed origin as $U=\frac{A \sqrt{x}}{x^2+B}$, where $A$ and $B$ are dimensional constants then dimensional formula for $A B$ is

  • A

    $\left[ ML ^{11/2} T ^{-2}\right]$

  • B

    $\left[ ML ^{7 / 2} T ^{-2}\right]$

  • C

    $\left[M^2 L^{9 / 2} T^{-2}\right]$

  • D

    $\left[ ML ^{13 / 2} T ^{-3}\right]$

Similar Questions

The equation of stationary wave is

$\mathrm{y}=2 \mathrm{a} \sin \left(\frac{2 \pi \mathrm{nt}}{\lambda}\right) \cos \left(\frac{2 \pi \mathrm{x}}{\lambda}\right)$

Which of the following is NOT correct

  • [JEE MAIN 2024]

 Match List $-I$ with List $-II$
  List $-I$   List $-II$
$A$. Coefficient of Viscosity $I$. $[M L^2T^{–2}]$
$B$. Surface Tension  $II$. $[M L^2T^{–1}]$
$C$. Angular momentum $III$. $[M L^{-1}T^{–1}]$
$D$. Rotational Kinetic energy $IV$. $[M L^0T^{–2}]$

  • [JEE MAIN 2024]

Which of the following relation cannot be deduced using dimensional analysis? [the symbols have their usual meanings]

Choose the correct match

List I 

List II

 $(i)$ Curie

 $(A)$ $ML{T^{ - 2}}$

 $(ii)$ Light year 

 $(B)$ $M$

 $(iii)$ Dielectric strength

 $(C)$ Dimensionless

 $(iv)$ Atomic weight

 $(D)$ $T$

 $(v)$ Decibel

 $(E)$ $M{L^2}{T^{ - 2}}$

 

 $(F)$ $M{T^{ - 3}}$

 

 $(G)$ ${T^{ - 1}}$

 

 $(H)$ $L$

 

 $(I)$ $ML{T^{ - 3}}{I^{ - 1}}$

 

 $(J)$ $L{T^{ - 1}}$

  • [IIT 1992]

A dimensionally consistent relation for the volume V of a liquid of coefficient of viscosity ' $\eta$ ' flowing per second, through a tube of radius $r$ and length / and having a pressure difference $P$ across its ends, is