The $SI$ unit of energy is $J=k g\, m^{2} \,s^{-2} ;$ that of speed $v$ is $m s^{-1}$ and of acceleration $a$ is $m s ^{-2} .$ Which of the formulae for kinetic energy $(K)$ given below can you rule out on the basis of dimensional arguments ( $m$ stands for the mass of the body ):

$(a)$ $K=m^{2} v^{3}$

$(b)$ $K=(1 / 2) m v^{2}$

$(c)$ $K=m a$

$(d)$ $K=(3 / 16) m v^{2}$

$(e)$ $K=(1 / 2) m v^{2}+m a$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Answer Every correct formula or equation must have the same dimensions on both sides of the equation. Also, only quantities with the same physical dimensions can be added or subtracted. The dimensions of the quantity on the right side are $\left[ M ^{2} L ^{3} T ^{-3}\right]$ for $( a ) ; \left[ M L ^{2} T ^{-2}\right]$ for $(b)$ and $(d)$: $\left[ MLT ^{-2}\right]$ for $(c)$. The quantity on the right side of $(e)$ has no proper dimensions since two quantities of different dimensions have been added. since the kinetic energy $K$ has the dimensions of $\left[ M L ^{2} T ^{-2}\right],$ formulas $(a), (c)$ and $(e)$ are ruled out. Note that dimensional arguments cannot tell which of the two, $(b)$ or $(d)$, is the correct formula. For this, one must turn to the actual definition of kinetic energy . The correct formula for kinetic energy is given by $(b)$.

Similar Questions

If the unit of force is $100\,N$, unit of length is $10\,m$ and unit of time is $100\,s$ , what is the unit of mass in this system of units ?

If orbital velocity of planet is given by $v = {G^a}{M^b}{R^c}$, then

Which of the following equations is dimensionally incorrect?

Where $t=$ time, $h=$ height, $s=$ surface tension, $\theta=$ angle, $\rho=$ density, $a, r=$ radius, $g=$ acceleration due to gravity, ${v}=$ volume, ${p}=$ pressure, ${W}=$ work done, $\Gamma=$ torque, $\varepsilon=$ permittivity, ${E}=$ electric field, ${J}=$ current density, ${L}=$ length.

  • [JEE MAIN 2021]

A physcial quantity $x$ depends on quantities $y$ and $z$ as follows: $x = Ay + B\tan Cz$, where $A,\,B$ and $C$ are constants. Which of the following do not have the same dimensions

$Assertion$ : Specific gravity of a fluid is a dimensionless quantity.

$Reason$ : It is the ratio of density of fluid to the density of water

  • [AIIMS 2005]