- Home
- Standard 11
- Physics
એક કણની સ્થિતિ ઊર્જા $U=\frac{A \sqrt{x}}{x^2+B}$, ઉદગમબિંદુુથી $x$ અંતરે બદલાય છે , જ્યાં $A$ અને B પારિમાણિક અચળાંકો છે, તો $A B$ નું પારિમાણિક સૂત્ર શું થાય?
$\left[ ML ^{11/2} T ^{-2}\right]$
$\left[ ML ^{7 / 2} T ^{-2}\right]$
$\left[M^2 L^{9 / 2} T^{-2}\right]$
$\left[ ML ^{13 / 2} T ^{-3}\right]$
Solution
(a)
$x =$ distance from a fixed origin
$u =\frac{ A \sqrt{ x }}{ x ^2+ B }$
unit of $B$ is same as $x ^2$. Unit of $x ^2=\left[ L ^2\right]$
$B =\left[ L ^2\right]$
$u =\frac{\left[ x ^{1 / 2}\right] A }{ x ^2+ B }$
$A =\frac{ u \left( x ^2+ B \right)}{\sqrt{ x }}=\frac{ kgm }{ s ^2} \times \frac{ m ^2}{ m ^{1 / 2}}$
$A =\frac{ kgm }{ s ^2}$
$A =\left[ ML ^{7 / 2} T ^{-2}\right]$
Dimensions of $AB =\left[ ML ^{7 / 2} T ^{-2}\right]\left[ L ^2\right]$
Dimensions of $AB =\left[ ML ^{11 / 2} T ^{-2}\right]$