- Home
- Standard 11
- Physics
The pressure $P_{1}$ and density $d_{1}$ of diatomic gas $\left(\gamma=\frac{7}{5}\right)$ changes suddenly to $P _{2}\left(> P _{1}\right)$ and $d _{2}$ respectively during an adiabatic process. The temperature of the gas increases and becomes $......$ times of its initial temperature.$\left(\right.$ given $\left.\frac{ d _{2}}{ d _{1}}=32\right)$
$5$
$2$
$4$
$0$
Solution
$PV ^{\gamma}=$ const $\quad d =\frac{ m }{ v }$
$p \left(\frac{ m }{ d }\right)^{\gamma}=$ const
$\frac{ p }{ d ^{\gamma}}=$ const $\quad \frac{ d _{2}}{ d _{1}}=32$
$\frac{ p _{1}}{ p _{2}}=\left(\frac{ d _{1}}{ d _{2}}\right)^{\gamma}=\left(\frac{1}{32}\right)^{7 / 5}=\frac{1}{128}$
$\frac{ T _{1}}{ T _{2}}=\frac{ P _{1} V _{1}}{ P _{2} V _{2}}=\frac{1}{128} 32=\frac{1}{4}$
Similar Questions
In Column$-I$ process and in Column$-II$ first law of thermodynamics are given. Match them appropriately :
Column$-I$ | Column$-II$ |
$(a)$ Adiabatic | $(i)$ $\Delta Q = \Delta U$ |
$(b)$ Isothermal | $(ii)$ $\Delta Q = \Delta W$ |
$(iii)$ $\Delta U = -\Delta W$ |