The pressure at the bottom of a tank containing a liquid does not depend on
Acceleration due to gravity
Height of the liquid column
Area of the bottom surface
Nature of the liquid
When an air bubble of radius $r$ rises from the bottom to the surface of a lake, its radius becomes $\frac{{5r}}{4}$.Taking the atmospheric pressure to be equal to $10\,m$ height of water column, the depth of the lake would approximately be ....... $m$ (ignore the surface tension and the effect of temperature)
The surface tension of soap solution is $25 \times {10^{ - 3}}\,N{m^{ - 1}}$. The excess pressure inside a soap bubble of diameter $1 \,cm$ is ....... $Pa$
What is the pressure inside the drop of mercury of radius $3.00 \;mm$ at room temperature? Surface tension of mercury at that temperature $\left(20\,^{\circ} C \right)$ is $4.65 \times 10^{-1}\; N m ^{-1} .$ The atmospheric pressure is $1.01 \times 10^{5}\; Pa$. Also give the excess pressure inside the drop.
Two long parallel glass plates has water between them. Contact angle between glass and water is zero. If separation between the plates is $'d'$ ( $d$ is small). Surface tension of water is $'T'$ . Atmospheric pressure = $P_0$ . Then pressure inside water just below the air water interface is
If two glass plates have water between them and are separated by very small distance ( see figure), it is very difficult to pull them apart. It is because the water in between forms cylindrical surface on the side that gives rise to lower pressure in the water in comparison to atmosphere. If the radius of the cylindrical surface is $R$ and surface tension of water is $T$ then the pressure in water between the plates is lower by