The pressure on a square plate is measured by measuring the force on the plate and the length of the sides of the plate. If the maximum error in the measurement of force and length are respectively $4\%$ and $2\%$, The maximum error in the measurement of pressure is ....... $\%$
$1$
$2$
$6$
$8$
In an experiment of determine the Young's modulus of wire of a length exactly $1\; m$, the extension in the length of the wire is measured as $0.4\,mm$ with an uncertainty of $\pm 0.02\,mm$ when a load of $1\,kg$ is applied. The diameter of the wire is measured as $0.4\,mm$ with an uncertainty of $\pm 0.01\,mm$. The error in the measurement of Young's modulus $(\Delta Y)$ is found to be $x \times 10^{10}\,Nm ^{-2}$. The value of $x$ is
$\left[\right.$ Take $\left.g =10\,m / s ^{2}\right]$
In an experiment, the following observation's were recorded : $L = 2.820\, m, M = 3.00 \,kg, l = 0.087 \,cm$, Diameter $D = 0.041 \,cm$ Taking $g = 9.81$ $m/{s^2}$ using the formula , $Y=\frac{{4MgL}}{{\pi {D^2}l}}$, the maximum permissible error in $Y$ is ......... $\%$
A sliver wire has mass $(0.6 \pm 0.006) \; g$, radius $(0.5 \pm 0.005) \; mm$ and length $(4 \pm 0.04) \; cm$. The maximum percentage error in the measurement of its density will be $......\,\%$
A student performs an experiment to determine the Young's modulus of a wire, exactly $2 \mathrm{~m}$ long, by Searle's method. In a particular reading, the student measures the extension in the length of the wire to be $0.8 \mathrm{~mm}$ with an uncertainty of $\pm 0.05 \mathrm{~mm}$ at a load of exactly $1.0 \mathrm{~kg}$. The student also measures the diameter of the wire to be $0.4 \mathrm{~mm}$ with an uncertainty of $\pm 0.01 \mathrm{~mm}$. Take $g=9.8 \mathrm{~m} / \mathrm{s}^2$ (exact). The Young's modulus obtained from the reading is
The distance $s$ travelled by a particle in time $t$ is $s=u t-\frac{1}{2} \,g t^{2}$. The initial velocity of the particle was measured to be $u=1.11 \pm 0.01 \,m / s$ and the time interval of the experiment was $t=1.01 \pm 0.1 \,s$. The acceleration was taken to be $g=9.8 \pm 0.1 \,m / s ^{2}$. With these measurements, the student estimates the total distance travelled. How should the student report the result?