A thin copper wire of length l metre increases in length by $ 2\%$ when heated through $10^o C$. ......... $\%$ is the percentage increase in area when a square copper sheet of length $l$ metre is heated through $10^o C$
$4$
$8$
$16$
None of the above
In an experiment to find acceleration due to gravity $(g)$ using simple pendulum, time period of $0.5\,s$ is measured from time of $100$ oscillation with a watch of $1\;s$ resolution. If measured value of length is $10\; cm$ known to $1\; mm$ accuracy. The accuracy in the determination of $g$ is found to be $x \%$. The value of $x$ is
Two resistors of resistances $R_{1}=100 \pm 3$ $ohm$ and $R_{2}=200 \pm 4$ $ohm$ are connected $(a)$ in series, $(b)$ in parallel. Find the equivalent resistance of the $(a)$ series combination, $(b)$ parallel combination. Use for $(a)$ the relation $R=R_{1}+R_{2}$ and for $(b)$ $\frac{1}{R^{\prime}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ and $\frac{\Delta R^{\prime}}{R^{\prime 2}}=\frac{\Delta R_{1}}{R_{1}^{2}}+\frac{\Delta R_{2}}{R_{2}^{2}}$
In order to determine the Young's Modulus of a wire of radius $0.2\, cm$ (measured using a scale of least count $=0.001\, cm )$ and length $1 \,m$ (measured using a scale of least count $=1\, mm$ ), a weight of mass $1\, kg$ (measured using a scale of least count $=1 \,g$ ) was hanged to get the elongation of $0.5\, cm$ (measured using a scale of least count $0.001\, cm$ ). What will be the fractional error in the value of Young's Modulus determined by this experiment? (in $\%$)
If the error in the measurement of radius of a sphere is $2\%$ then the error in the determination of volume of the sphere will be ........ $\%$
The percentage errors in the measurement of mass and speed are $2\%$ and $3\%$ respectively. How much will be the maximum error in the estimation of the kinetic energy obtained by measuring mass and speed ......... $\%$