कथन $(\sim p ) \vee( p \wedge \sim q )$ समतुल्य है
$p \wedge \left( { \sim q} \right)$
$p \to \sim q$
$q \to p$
$p \vee \left( { \sim q} \right)$
$\sim p \wedge q$ के तार्किक समतुल्य है
यदि कथन $( P \wedge(\sim R )) \rightarrow((\sim R ) \wedge Q )$ का सत्य मान $F$ है, तो निम्न में से किस का सत्य मान $F$ है?
निम्न कथनों पर विचार करें
$P 1: \sim( p \rightarrow \sim q )$
$P 2:( p \wedge \sim q )((\sim p ) \wedge q )$
यदि कथन $p \rightarrow((\sim p) \wedge q)$ असत्य है तो
बूलीय व्यंजक (Boolean expression) $(( p \wedge q ) \vee( p \vee \sim q )) \wedge(\sim p \wedge \sim q )$ निम्न में जिसके तुल्य है, वह है
कौन सा वेन आरेख कथन “सभी विद्यार्थी मेहनती है” की सत्यता को दर्शाता है
जहाँ $U$ = मानवों का समष्टीय समुच्चय, $S$ = सभी विद्यार्थियों का समुच्चय, $H$ = सभी मेहनती का समुच्चय.