The quantum hall resistance $R_H$ is a fundamental constant with dimensions of resistance. If $h$ is Planck's constant and $e$ is the electron charge, then the dimension of $R_H$ is the same as

  • [KVPY 2011]
  • A

    $\frac{e^2}{h}$

  • B

    $\frac{h}{e^2}$

  • C

    $\frac{h^2}{e}$

  • D

    $\frac{e}{h^2}$

Similar Questions

The volume of a liquid flowing out per second of a pipe of length $l$ and radius $r$ is written by a student as $V\, = \,\frac{{\pi p{r^4}}}{{8\eta l}}$ where $p$ is the pressure difference between the two ends of the pipe and $\eta $ is coefficent of viscosity of the liquid having dimensional formula $[M^1L^{-1}T^{-1}] $. Check whether the equation is dimensionally correct.

$1$ $joule$ of energy is to be converted into new system of units in which length is  measured in $10\, m$, mass in $10\, kg$ and time in $1$ $minute$ then numerical value of  $1\, J$ in the new system is 

If $P$ represents radiation pressure, $c$ represents speed of light and $Q$ represents radiation energy striking a unit area per second, then non-zero integers $x,\,y$ and $z$ such that ${P^x}{Q^y}{c^z}$ is dimensionless, are

  • [AIPMT 1992]

If dimensions of critical velocity $v_c$ of a liquid flowing through a tube are expressed as$ [\eta ^x \rho ^yr^z]$ where  $\eta ,\rho $ and $r $ are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of $x, y$ and $z$ are given by

  • [AIPMT 2015]

If momentum $(P),$ area $(A)$ and time $(T)$ are taken to be the fundamental quantities then the dimensional formula for energy is :

  • [JEE MAIN 2020]