The radical centre of the circles ${x^2} + {y^2} - 16x + 60 = 0,\,{x^2} + {y^2} - 12x + 27 = 0,$ ${x^2} + {y^2} - 12y + 8 = 0$ is

  • A

    $(13, 33/4)$

  • B

    $(33/4, -13)$

  • C

    $(33/4, 13)$

  • D

    None of these

Similar Questions

The equation of radical axis of the circles ${x^2} + {y^2} + x - y + 2 = 0$ and $3{x^2} + 3{y^2} - 4x - 12 = 0,$ is

Let $C: x^2+y^2=4$ and $C^{\prime}: x^2+y^2-4 \lambda x+9=0$ be two circles. If the set of all values of $\lambda$ so that the circles $\mathrm{C}$ and $\mathrm{C}^{\prime}$ intersect at two distinct points, is ${R}-[a, b]$, then the point $(8 a+12,16 b-20)$ lies on the curve:

  • [JEE MAIN 2024]

Three circles of radii $a, b, c\, ( a < b < c )$ touch each other externally. If they have $x -$ axis as a common tangent, then

  • [JEE MAIN 2019]

If the circles of same radius a and centers at $(2, 3)$ and $(5, 6)$ cut orthogonally, then $a =$

Let $S = 0$ is the locus of centre of a variable circle which intersect the circle $x^2 + y^2 -4x -6y = 0$ orthogonally at $(4, 6)$ . If $P$ is a variable point of $S = 0$ , then least value of $OP$ is (where $O$ is origin)