Gujarati
10-1.Circle and System of Circles
hard

The radical centre of the circles ${x^2} + {y^2} - 16x + 60 = 0,\,{x^2} + {y^2} - 12x + 27 = 0,$ ${x^2} + {y^2} - 12y + 8 = 0$ is

A

$(13, 33/4)$

B

$(33/4, -13)$

C

$(33/4, 13)$

D

None of these

Solution

(d) ${S_1}$$ \equiv $ ${x^2} + {y^2} – 16x + 60 = 0$ …..$(i)$

${S_2}$$ \equiv $${x^2} + {y^2} – 12x + 27 = 0$ …..$(ii)$

${S_3}$$ \equiv $${x^2} + {y^2} – 12y + 8 = 0$ …..$(iii)$

The radical axis of circle $(i)$ and circle $(ii)$ is

${S_1} – {S_2} = 0\, \Rightarrow \, – 4x + 33 = 0$ ….$(iv)$

the radical axis of circle $(ii)$ and circle $(iii)$ is ${S_2} – {S_3} = 0$

$ \Rightarrow \,\, – 12 + 12y + 19 = 0$ …..$(v)$

Solving $(iv)$ and $(v),$ we get the radical centre $\left( {\frac{{33}}{4},\,\frac{{20}}{3}} \right)$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.