वृत्तों ${x^2} + {y^2} - 16x + 60 = 0,\,{x^2} + {y^2} - 12x + 27 = 0$ तथा ${x^2} + {y^2} - 12y + 8 = 0$ का मूलाक्ष केन्द्र हैं

  • A

    $(13, 33/4)$

  • B

    $(33/4, -13)$

  • C

    $(33/4, 13)$

  • D

    इनमें से कोई नहीं

Similar Questions

दो वृत्त ${S_1} = {x^2} + {y^2} + 2{g_1}x + 2{f_1}y + {c_1} = 0$ व ${S_2} = {x^2} + {y^2} + 2{g_2}x + 2{f_2}y + {c_2} = 0$ एक-दूसरे को लम्बवत् काटते हैं, तब   

माना वृत्त $C$, बिन्दु $A (2,-1)$ तथा $B (3,4)$ से गुजरता है। रेखाखण्ड $AB$, वृत्त $C$ का व्यास नहीं है। यदि वृत्त $C$ की त्रिज्या $r$ तथा इसका केन्द्र, वृत्त $( x -5)^2+( y -1)^2=\frac{13}{2}$ पर स्थित है, तो $r ^2$ बराबर है :

  • [JEE MAIN 2022]

वृत्तों ${x^2} + {y^2} + 13x - 3y = 0$ तथा $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ के प्रतिच्छेद बिन्दु से होकर जाने वाले वृत्त का समीकरण, जिसका केन्द्र $13x + 30y = 0$ पर स्थित है, होगा

एक वत्त $C$ रेखा $x =2 y$ को बिन्दु $(2,1)$ पर स्पर्श करता है तथा वत्त $C_{1}: x^{2}+y^{2}+2 y-5=0$ को दो बिन्दुओं $P$ तथा $Q$ पर इस प्रकार काटता है कि $P Q$ वत्त $C _{1}$ का एक व्यास है, तो $C$ का व्यास है -

  • [JEE MAIN 2021]

वृत्त ${x^2} + {y^2} + 4x + 6y + 3 = 0$ व $2({x^2} + {y^2}) + 6x + 4y + C = 0$ लम्बवत् काटेंगे यदि  $C =$