Gujarati
Hindi
12.Kinetic Theory of Gases
normal

The ratio of de-Broglie wavelength of molecules of hydrogen and helium in two jars kept separately at temperatures of $27\,^oC$ and $127\,^oC$ respectively is

A

$\sqrt {\frac{1}{2}} $

B

$\sqrt {\frac{8}{3}} $

C

$\frac{4}{3}$

D

$\frac{3}{4}$

Solution

$\frac{1}{2} m v^{2}=\frac{3}{2} k T$

where $\mathrm{k}$ is the Boltzmann constant

$\therefore v=\sqrt{\frac{3 k T}{m}}$

Now the de-Broglie wavelength is given by

$\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{\mathrm{h}}{\mathrm{m}} \sqrt{\frac{\mathrm{m}}{3 \mathrm{kT}}}$

$\lambda=\frac{\mathrm{h}}{\sqrt{3 \mathrm{mkT}}}$

$\therefore \frac{{{\lambda _{\rm{H}}}}}{{{\lambda _{{\rm{He}}}}}} = \sqrt {\frac{{{{\rm{m}}_{{\rm{He}}}}}}{{{{\rm{m}}_{\rm{H}}}}} \times \frac{{{{\rm{T}}_{{\rm{He}}}}}}{{{{\rm{m}}_{\rm{H}}}}}} $

$\sqrt {\frac{4}{2} \times \frac{{127 + 273}}{{27 + 273}}} $

$ = \sqrt {\frac{{4 \times 400}}{{2 \times 300}}}  = \sqrt {\frac{8}{3}} $

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.