The ratio of maximum and minimum magnitudes of the resultant of two vector $\vec a$ and $\vec b$ is $3 : 1$. Now $| \vec a |$ is equal to
$| \vec b |$
$2| \vec b |$
$3| \vec b |$
$4| \vec b |$
The vectors $\vec{A}$ and $\vec{B}$ are such that
$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$
The angle between the two vectors is
Explain the parallelogram method for vector addition. Also explain that this is comparable to triangle method.
Give equation to find the value of resultant vector and the direction of two vectors.
In an octagon $ABCDEFGH$ of equal side, what is the sum of $\overrightarrow{ AB }+\overrightarrow{ AC }+\overrightarrow{ AD }+\overrightarrow{ AE }+\overrightarrow{ AF }+\overrightarrow{ AG }+\overrightarrow{ AH }$ if, $\overrightarrow{ AO }=2 \hat{ i }+3 \hat{ j }-4 \hat{ k }$