If $\vec{P}+\vec{Q}=\overrightarrow{0}$, then which of the following is necessarily true?
$\vec{P}=\overrightarrow{0}$
$\vec{P}=-\vec{Q}$
$\vec{Q}= 0$
$\vec{P}=\vec{Q}$
The resultant of $\overrightarrow A + \overrightarrow B $ is ${\overrightarrow R _1}.$ On reversing the vector $\overrightarrow {B,} $ the resultant becomes ${\overrightarrow R _2}.$ What is the value of $R_1^2 + R_2^2$
On an open ground, a motorist follows a track that turns to his left by an angle of $60^{°}$ after every $500\; m$. Starting from a given turn, specify the displacement of the motorist at the third, sixth and eighth turn. Compare the magnitude of the displacement with the total path length covered by the motorist in each case.
Two forces $P$ and $Q$, of magnitude $2F$ and $3F$, respectively, are at an angle $\theta $ with each other. If the force $Q$ is doubled, then their resultant also gets doubled. Then, the angle $\theta $ is ....... $^o$
The vector that must be added to the vector $\hat i - 3\hat j + 2\hat k$ and $3\hat i + 6\hat j - 7\hat k$ so that the resultant vector is a unit vector along the $y-$axis is
Two forces of magnitude $P$ & $Q$ acting at a point have resultant $R$. The resolved part of $R$ in the direction of $P$ is of magnitude $Q$. Angle between the forces is :