11.Thermodynamics
normal

The ratio of the specific heats $\frac{{{C_p}}}{{{C_V}}} = \gamma $ in terms of degrees of freedom $(n)$ is givln by

A

$\left( {1 + \frac{1}{n}} \right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;$

B

$\;\left( {1 + \frac{n}{3}} \right)$

C

$\;\left( {1 + \frac{2}{n}} \right)$

D

$\;\left( {1 + \frac{n}{2}} \right)$

Solution

For $n$ degress of freedom, ${C_v} = \frac{n}{2}R$

Also, ${C_p} – {C_v} = R$

${C_P} = {C_v} + R = \frac{n}{2}R + R\left( {\frac{n}{2} + 1} \right)R$

$\gamma  = \frac{{{C_P}}}{{{C_v}}} = \frac{{\left( {\frac{n}{2} + 1} \right)R}}{{\left( {n/2} \right)R}} = \frac{{n + 2}}{n}\,\,\,\therefore \,\,\,\gamma  = 1 + \frac{2}{n}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.