The shaded region in the given figure is
$A \cap (B \cup C)$
$A \cup (B \cap C)$
$A \cap (B -C)$
$A -(B \cup C)$
Find the union of each of the following pairs of sets :
$A = \{ x:x$ is a natural number and multiple of $3\} $
$B = \{ x:x$ is a natural number less than $6\} $
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$C-D$
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$B \cup D$
Let $A$ and $B$ be subsets of a set $X$. Then
Show that if $A \subset B,$ then $(C-B) \subset( C-A)$