Show that $A \cap B=A \cap C$ need not imply $B = C$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A=\{0,1\}, B=\{0,2,3\},$ and $C=\{0,4,5\}$

Accordingly, $A \cap B=\{0\}$ and $A \cap C=\{0\}$

Here, $A \cap B=A \cap C=\{0\}$

However, $B \ne C\,[2 \in B$ and $2 \notin C]$

Similar Questions

If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find

$B \cup D$

Let $A=\{a, b\}, B=\{a, b, c\} .$ Is $A \subset B \,?$ What is $A \cup B \,?$

If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find

$D-C$

State whether each of the following statement is true or false. Justify you answer.

$\{2,6,10\}$ and $\{3,7,11\}$ are disjoint sets.

Show that for any sets $\mathrm{A}$ and $\mathrm{B}$, $A=(A \cap B) \cup(A-B)$ and $A \cup(B-A)=(A \cup B).$