- Home
- Standard 11
- Mathematics
1.Set Theory
easy
Show that $A \cap B=A \cap C$ need not imply $B = C$
Option A
Option B
Option C
Option D
Solution
Let $A=\{0,1\}, B=\{0,2,3\},$ and $C=\{0,4,5\}$
Accordingly, $A \cap B=\{0\}$ and $A \cap C=\{0\}$
Here, $A \cap B=A \cap C=\{0\}$
However, $B \ne C\,[2 \in B$ and $2 \notin C]$
Standard 11
Mathematics