The shaded region in venn-diagram can be represented by which of the following ?
$(A \cup C)\cap (A^C \cup B^C )\cup(A^C \cup C^C )\cup(B^C \cup C^C )$
$(A \cup C)\cap (A^C \cup B^C )\cap(A^C \cup C^C )\cap(B^C \cup C^C )$
$(A \cup C)\cap (A^C \cup B^C )\cap(A^C \cup C^C )\cap(B^C \cup C^C) \cup(A \cap B \cap C)$
$(A \cup C)\cap (A^C \cup B^C )\cap(A^C \cup C^C )\cap(B^C \cup C^C\cap(A \cap B \cap C)$
Let $n(U) = 700,\,n(A) = 200,\,n(B) = 300$ and $n(A \cap B) = 100,$ then $n({A^c} \cap {B^c}) = $
Taking the set of natural numbers as the universal set, write down the complements of the following sets:
$\{ x:x$ is a prime number $\} $
Given $n(U) = 20$, $n(A) = 12$, $n(B) = 9$, $n(A \cap B) = 4$, where $U$ is the universal set, $A$ and $B$ are subsets of $U$, then $n({(A \cup B)^C}) = $
Taking the set of natural numbers as the universal set, write down the complements of the following sets:
$\{ x:x \in N$ and $2x + 1\, > \,10\} $
Let $\mathrm{U}$ be universal set of all the students of Class $\mathrm{XI}$ of a coeducational school and $\mathrm{A}$ be the set of all girls in Class $\mathrm{XI}$. Find $\mathrm{A}'.$