Which of the following statement is false (where $A$ $\&$ $B$ are two non empty sets)
$A - B = A \cap B'$
$A - B = A - (A \cap B)$
$A - B = A - B'$
$A - B = (A \cup B) - B$
If $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ and $B =\{2,3,5,7\} .$ Verify that
$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find
$(B-C)^{\prime}$
Taking the set of natural numbers as the universal set, write down the complements of the following sets:
$\{ x:x \in N$ and $2x + 1\, > \,10\} $
Taking the set of natural numbers as the universal set, write down the complements of the following sets:
$\{ x:x\, \ge \,7\} $
Fill in the blanks to make each of the following a true statement :
$\varnothing^ {\prime}\cap A$