સમીકરણ $tanx\, -\, x = 0$ ના ન્યૂનતમ ધન બીજ ............ અંતરાલ માં છે
$\left( {0,\frac{\pi }{2}} \right)$
$\left( {\frac{\pi }{2},\pi } \right)$
$\left( {\pi,\frac{3\pi }{2}} \right)$
$\left( {\frac{3\pi }{2},2\pi } \right)$
જો $\mathrm{n}$ એ સમીકરણ $2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1, x \in[0, \pi]$ નાં ઉકેલની સંખ્યા છે અને $S$ એ ઉકેલનો સરવાળો છે તો ક્રમયુક્ત $(\mathrm{n}, \mathrm{S})$ જોડ મેળવો.
જો $\tan (\cot x) = \cot (\tan x),$ તો $\sin 2x =$
જો $\alpha ,\,\beta ,\,\gamma ,\,\delta $ એ ચડતા ક્રમમા છે જેના sine કિમત ધન સંખ્યા $k$ જેટલી હોય તો $4\sin \frac{\alpha }{2} + 3\sin \frac{\beta }{2} + 2\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ ની કિમત મેળવો.
જો $A + B + C = \pi$ & $sin\, \left( {A\,\, + \,\,\frac{C}{2}} \right) = k \,sin,\frac{C}{2}$ થાય તો $tan\, \frac{A}{2} \,tan \, \frac{B}{2}=$
અંતરાલ $[0,2 \pi]$ માં સમીકરણ $x +2 \tan x =\frac{\pi}{2}$ ના ઉકેલની સંખ્યા મેળવો.