Trigonometrical Equations
normal

The smallest positive root of the equation $tanx\,  -\,  x = 0$ lies on

A

$\left( {0,\frac{\pi }{2}} \right)$

B

$\left( {\frac{\pi }{2},\pi } \right)$

C

$\left( {\pi,\frac{3\pi }{2}} \right)$

D

$\left( {\frac{3\pi }{2},2\pi } \right)$

Solution

Let $f(x)=\tan x-x$

For $0<x<\frac{\pi}{2}$

$\tan x>x$

$\therefore f(x)=\tan x-x$ has no roots in $\left(0, \frac{\pi}{2}\right)$

For $\frac{\pi}{2}<x<\pi \tan x$ is negative $\therefore f(x)=\tan x-x<0$

So $f(x)=0$ has no roots in $\left(\frac{\pi}{2}, \pi\right)$ For $\frac{3 \pi}{2}<x<2 \pi, \tan x$ is negative

$\therefore f(x)=\tan x-x<0$

So $f(x)=0$ has no roots in $\left(\frac{3 \pi}{2}, 2 \pi\right)$ We have $f(\pi)=0-\pi<0$

and $f\left(\frac{3 \pi}{2}\right)=\tan \frac{3 \pi}{2}-\frac{3 \pi}{2}>0$

$\therefore f(x)=0$ has atleast one root between $\pi$ and $\frac{3 \pi}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.