The smallest positive root of the equation $tanx\, -\, x = 0$ lies on
$\left( {0,\frac{\pi }{2}} \right)$
$\left( {\frac{\pi }{2},\pi } \right)$
$\left( {\pi,\frac{3\pi }{2}} \right)$
$\left( {\frac{3\pi }{2},2\pi } \right)$
Let $P = \left\{ {\theta :\sin \,\theta - \cos \,\theta = \sqrt 2 \,\cos \,\theta } \right\}$ and $Q = \left\{ {\theta :\sin \,\theta + \cos \,\theta = \sqrt {2\,} \sin \,\theta } \right\}$ be two sets. Then
Solve $\cos x=\frac{1}{2}$
Find the principal solutions of the equation $\sin x=\frac{\sqrt{3}}{2}$
The number of pairs $(x, y)$ satisfying the equations $\sin x + \sin y = \sin (x + y)$ and $|x| + |y| = 1$ is
If $\alpha ,\beta ,\gamma $ be the angles made by a line with $x, y$ and $z$ axes respectively so that $2\left( {\frac{{{{\tan }^2}\,\alpha }}{{1 + {{\tan }^2}\,\alpha }} + \frac{{{{\tan }^2}\,\beta }}{{1 + {{\tan }^2}\,\beta }} + \frac{{{{\tan }^2}\,\gamma }}{{1 + {{\tan }^2}\,\gamma }}} \right) = 3\,{\sec ^2}\,\frac{\theta }{2},$ then $\theta =$