The solution of $3\tan (A - {15^o}) = \tan (A + {15^o})$ is
$n\pi + \frac{\pi }{4}$
$2n\pi + \frac{\pi }{4}$
$2n\pi - \frac{\pi }{4}$
$\frac{{n\pi }}{2} + {( - 1)^n}\frac{\pi }{2}$
If$\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0$, where $0 < \theta < {180^o}$, then $\theta =$
The number of solutions to $\sin \left(\pi \sin ^2 \theta\right)+\sin \left(\pi \cos ^2 \theta\right)=2 \cos \left(\frac{\pi}{2} \cos \theta\right)$ satisfying $0 \leq \theta \leq 2 \pi$ is
Find the principal solutions of the equation $\tan x=-\frac{1}{\sqrt{3}}.$
One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval
If $2(\sin x - \cos 2x) - \sin 2x(1 + 2\sin x)2\cos x = 0$ then