The solution of the equation $(x + 1) + (x + 4) + (x + 7) + ......... + (x + 28) = 155$ is

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

If ${a_1},\;{a_2},............,{a_n}$ are in $A.P.$ with common difference , $d$, then the sum of the following series is $\sin d(\cos {\rm{ec}}\,{a_1}.co{\rm{sec}}\,{a_2} + {\rm{cosec}}\,{a_2}.{\rm{cosec}}\,{a_3} + ...........$$ + {\rm{cosec}}\;{a_{n - 1}}{\rm{cosec}}\;{a_n})$

If $a,b,c$ are in $A.P.$, then $\frac{1}{{\sqrt a + \sqrt b }},\,\frac{1}{{\sqrt a + \sqrt c }},$ $\frac{1}{{\sqrt b + \sqrt c }}$ are in

If ${\log _3}2,\;{\log _3}({2^x} - 5)$ and ${\log _3}\left( {{2^x} - \frac{7}{2}} \right)$ are in $A.P.$, then $x$ is equal to

  • [IIT 1990]

If the $9^{th}$ term of an $A.P.$ be zero, then the ratio of its $29^{th}$ and $19^{th}$ term is

The number of terms in an $A .P.$ is even ; the sum of the odd terms in it is $24$ and that the even terms is $30$. If the last term exceeds the first term by $10\frac{1}{2}$ , then the number of terms in the $A.P.$ is

  • [JEE MAIN 2014]