- Home
- Standard 11
- Mathematics
8. Sequences and Series
normal
Let $a$, $b$ be two non-zero real numbers. If $p$ and $r$ are the roots of the equation $x ^{2}-8 ax +2 a =0$ and $q$ and $s$ are the roots of the equation $x^{2}+12 b x+6 b$ $=0$, such that $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ are in A.P., then $a ^{-1}- b ^{-1}$ is equal to $......$
A
$37$
B
$36$
C
$38$
D
$32$
(JEE MAIN-2022)
Solution
$x ^{2}-8 ax +2 a =0$
$p + r =8 a$
$pr =2 a$
$\frac{1}{ p }+\frac{1}{ r }=4$
$\frac{2}{ q }=4$
$q =\frac{1}{2}$
$p =\frac{1}{5}$
$x^{2}+12 b x+6 b=0$
$q+s=-12 b$
$q s=6 b$
$\frac{1}{q}+\frac{1}{s}=-2$
$\frac{2}{r}=-2$
$r=-1$
$s=\frac{-1}{4}$
Now,$\frac{1}{ a }-\frac{1}{ b }=\frac{2}{ pr }-\frac{6}{ qs }=38$
Standard 11
Mathematics