समीकरण $(x + 1) + (x + 4) + (x + 7) + ......... + (x + 28) = 155$ के लिए $x$ का मान है
$1$
$2$
$3$
$4$
$250$ से $1000 $ तक की संख्यायें जो $3$ से विभाजित हों, का योग होगा
किसी समांतर श्रेणी का $p$ वाँ, $q$ वाँ $r$ वाँ पद क्रमशः $a, b, c$ हैं, तो सिद्ध कीजिए
$(q-r) a+(r-p) b+(p-q) c=0$
यदि ${ }^{ n } C _{4},{ }^{ n } C _{5}$ तथा ${ }^{ n } C _{6}$ समान्तर श्रेणी में हो, तो $n$ का मान हो सकता है
दी गई परिभाषाओं के आधार पर निम्नलिखित प्रत्येक अनुक्रम के प्रथम तीन पद बताइए
$a_{n}=\frac{n-3}{4}$
किसी समांतर श्रेणी के $m$ तथा $n$ पदों के योगफलों का अनुपात $m^{2}: n^{2}$ है तो दर्शाइए कि $m$ वें तथा $n$ वें पदों का अनुपात $(2 m-1):(2 n-1)$ है।