The solution set of the equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ is
$\left\{ {\frac{p}{q},\,\frac{q}{p}} \right\}$
$\left\{ {pq,\,\frac{p}{q}} \right\}$
$\left\{ {\frac{q}{p},\,pq} \right\}$
$\left\{ {\frac{{p + q}}{p},\,\frac{{p + q}}{q}} \right\}$
If $x$ be real, the least value of ${x^2} - 6x + 10$ is
The sum of all the real roots of the equation $\left( e ^{2 x }-4\right)\left(6 e ^{2 x }-5 e ^{ x }+1\right)=0$ is
The number of real solutions of the equation $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$, is
If $\alpha ,\beta $are the roots of ${x^2} - ax + b = 0$ and if ${\alpha ^n} + {\beta ^n} = {V_n}$, then
If $a, b, c$ are real numbers such that $a+b+c=0$ and $a^2+b^2+c^2=1$, then $(3 a+5 b-8 c)^2+(-8 a+3 b+5 c)^2$ $+(5 a-8 b+3 c)^2$ is equal to