The solution set of the equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ is

  • A

    $\left\{ {\frac{p}{q},\,\frac{q}{p}} \right\}$

  • B

    $\left\{ {pq,\,\frac{p}{q}} \right\}$

  • C

    $\left\{ {\frac{q}{p},\,pq} \right\}$

  • D

    $\left\{ {\frac{{p + q}}{p},\,\frac{{p + q}}{q}} \right\}$

Similar Questions

The roots of the equation ${x^4} - 4{x^3} + 6{x^2} - 4x + 1 = 0$ are

If $|{x^2} - x - 6| = x + 2$, then the values of $x$ are

Let $p_1(x)=x^3-2020 x^2+b_1 x+c_1$ and $p_2(x)=x^3-2021 x^2+b_2 x+c_2$ be polynomials having two common roots $\alpha$ and $\beta$. Suppose there exist polynomials $q_1(x)$ and $q_2(x)$ such that $p_1(x) q_1(x)+p_2(x) q_2(x)=x^2-3 x+2$. Then the correct identity is

  • [KVPY 2020]

The two roots of an equation ${x^3} - 9{x^2} + 14x + 24 = 0$ are in the ratio $3 : 2$. The roots will be

The real roots of the equation ${x^2} + 5|x| + \,\,4 = 0$ are