समीकरण $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ का हल समुच्चय है
$\left\{ {\frac{p}{q},\,\frac{q}{p}} \right\}$
$\left\{ {pq,\,\frac{p}{q}} \right\}$
$\left\{ {\frac{q}{p},\,pq} \right\}$
$\left\{ {\frac{{p + q}}{p},\,\frac{{p + q}}{q}} \right\}$
यदि समीकरण ${x^2} - 3kx + 2{e^{2\log k}} - 1 = 0$ के मूलों का गुणनफल $7$ है, तो इसके मूल वास्तविक होंगे जब
यदि ${x^3} + 8 = 0$ के मूल $\alpha , \beta$ तथा $\gamma$ हैं, तो वह समीकरण जिसके मूल ${\alpha ^2},{\beta ^2}$ तथा ${\gamma ^2}$ है, होगा
मान लें कि $x, y$ दो अंकों वाली प्राकृत संख्याएँ हैं। संख्या $x$ के अंकों को उत्क्रमित $(reverse)$ करने पर संख्या $y$ प्राप्त होती हैं। यदि प्राकृत संख्या $m$ इस प्रकार है कि $x^2-y^2=m^2$ तो $x+y+m$ का मान होगा:
समीकरण $x^2+y^2=a^2+b^2+c^2$, यहाँ $x, y, a, b, c$ सभी अभाज्य संख्याएँ हैं, के कितने हल हैं?
माना समीकरण $\mathrm{x}^7+3 \mathrm{x}^5-13 \mathrm{x}^3-15 \mathrm{x}=0$ के मूल $\alpha_1, \alpha_2, \ldots, \alpha_7$ हैं तथा $\left|\alpha_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$ हैं तो $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6$ बराबर है____________.