If $x$ is real, the function $\frac{{(x - a)(x - b)}}{{(x - c)}}$ will assume all real values, provided
$a > b > c$
$a < b < c$
$a > c < b$
$a < c < b$
Let $x_1, x_2, \ldots, x_6$ be the roots of the polynomial equation $x^6+2 x^5+4 x^4+8 x^3+16 x^2+32 x+64=0$. Then,
If the equation $\frac{1}{x} + \frac{1}{{x - 1}} + \frac{1}{{x - 2}} = 3{x^3}$ has $k$ real roots, then $k$ is equal to -
If ${x^2} + px + 1$ is a factor of the expression $a{x^3} + bx + c$, then
The number of roots of the equation $|x{|^2} - 7|x| + 12 = 0$ is
If $x$ be real, then the minimum value of ${x^2} - 8x + 17$ is