If $x$ is real, the function $\frac{{(x - a)(x - b)}}{{(x - c)}}$ will assume all real values, provided
$a > b > c$
$a < b < c$
$a > c < b$
$a < c < b$
Sum of the solutions of the equation $\left[ {{x^2}} \right] - 2x + 1 = 0$ is (where $[.]$ denotes greatest integer function)
If the equation $\frac{1}{x} + \frac{1}{{x - 1}} + \frac{1}{{x - 2}} = 3{x^3}$ has $k$ real roots, then $k$ is equal to -
If the graph of $y = ax^3 + bx^2 + cx + d$ is symmetric about the line $x = k$ then
Let $a$ ,$b$, $c$ , $d$ , $e$ be five numbers satisfying the system of equations
$2a + b + c + d + e = 6$
$a + 2b + c + d + e = 12$
$a + b + 2c + d + e = 24$
$a + b + c + 2d + e = 48$
$a + b + c + d + 2e = 96$ ,
then $|c|$ is equal to
$\alpha$, $\beta$ ,$\gamma$ are roots of equatiuon $x^3 -x -1 = 0$ then equation whose roots are $\frac{1}{{\beta + \gamma }},\frac{1}{{\gamma + \alpha }},\frac{1}{{\alpha + \beta }}$ is