Gujarati
Hindi
10-1.Thermometry, Thermal Expansion and Calorimetry
medium

The specific heat of alcohol is about half that of water. Suppose you have identical masses of alcohol and water. The alcohol is initially at temperature $T_A$ . The water is initially at a different temperature $T_W$ . Now the two fluids are mixed in the same container and allowed to come into thermal equilibrium, with no loss of heat to the surroundings. The final temperature of the mixture will be 

A

closer to $T_A$ than $T_W$

B

closer to $T_W$ than $T_A$

C

exactly halfway between $T_A$ and $T_W$

D

dependent on the volume of alcohol used.

Solution

Final common temperature

$\mathrm{T}=\frac{\mathrm{m}_{1} \mathrm{S}_{1} \mathrm{T}_{1}+\mathrm{m}_{2} \mathrm{S}_{2} \mathrm{T}_{2}}{\mathrm{m}_{1} \mathrm{S}_{1}+\mathrm{m}_{2} \mathrm{S}_{2}}$

because $\mathrm{m}_{1}=\mathrm{m}_{2}$ given

$\therefore \quad \mathrm{T}=\frac{\mathrm{S}_{\mathrm{A}} \mathrm{T}_{\mathrm{A}}+\mathrm{S}_{\mathrm{w}} \mathrm{T}_{\mathrm{w}}}{\mathrm{S}_{\mathrm{A}}+\mathrm{S}_{\mathrm{w}}}$

$\& \mathrm{S}_{\mathrm{A}}=\frac{1}{2} \mathrm{S}_{\mathrm{w}}$ given

$\mathrm{T}=\frac{\frac{\mathrm{T}_{\mathrm{A}}}{2}+\mathrm{T}_{\mathrm{w}}}{\frac{1}{2}+1}=\left(\frac{\mathrm{T}_{\mathrm{A}}+2 \mathrm{T}_{\mathrm{w}}}{3}\right)$

$\mathrm{T}=\left(\frac{\mathrm{T}_{\mathrm{A}}}{3}+\frac{2 \mathrm{T}_{\mathrm{w}}}{3}\right) \&$ This $\mathrm{T}$ is nearer to $\mathrm{T}_{\mathrm{w}}$

$Method-II:$

$\mathrm{S}_{\mathrm{A}}=\frac{1}{2} \mathrm{S}_{\mathrm{w}}$ given

so, water has more thermal inertia, hence in mixture, it will loose less temperature $\&$ final temperature will be nearer to $\mathrm{T}_\mathrm{w'}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.