- Home
- Standard 11
- Physics
The specific heat of alcohol is about half that of water. Suppose you have identical masses of alcohol and water. The alcohol is initially at temperature $T_A$ . The water is initially at a different temperature $T_W$ . Now the two fluids are mixed in the same container and allowed to come into thermal equilibrium, with no loss of heat to the surroundings. The final temperature of the mixture will be
closer to $T_A$ than $T_W$
closer to $T_W$ than $T_A$
exactly halfway between $T_A$ and $T_W$
dependent on the volume of alcohol used.
Solution
Final common temperature
$\mathrm{T}=\frac{\mathrm{m}_{1} \mathrm{S}_{1} \mathrm{T}_{1}+\mathrm{m}_{2} \mathrm{S}_{2} \mathrm{T}_{2}}{\mathrm{m}_{1} \mathrm{S}_{1}+\mathrm{m}_{2} \mathrm{S}_{2}}$
because $\mathrm{m}_{1}=\mathrm{m}_{2}$ given
$\therefore \quad \mathrm{T}=\frac{\mathrm{S}_{\mathrm{A}} \mathrm{T}_{\mathrm{A}}+\mathrm{S}_{\mathrm{w}} \mathrm{T}_{\mathrm{w}}}{\mathrm{S}_{\mathrm{A}}+\mathrm{S}_{\mathrm{w}}}$
$\& \mathrm{S}_{\mathrm{A}}=\frac{1}{2} \mathrm{S}_{\mathrm{w}}$ given
$\mathrm{T}=\frac{\frac{\mathrm{T}_{\mathrm{A}}}{2}+\mathrm{T}_{\mathrm{w}}}{\frac{1}{2}+1}=\left(\frac{\mathrm{T}_{\mathrm{A}}+2 \mathrm{T}_{\mathrm{w}}}{3}\right)$
$\mathrm{T}=\left(\frac{\mathrm{T}_{\mathrm{A}}}{3}+\frac{2 \mathrm{T}_{\mathrm{w}}}{3}\right) \&$ This $\mathrm{T}$ is nearer to $\mathrm{T}_{\mathrm{w}}$
$Method-II:$
$\mathrm{S}_{\mathrm{A}}=\frac{1}{2} \mathrm{S}_{\mathrm{w}}$ given
so, water has more thermal inertia, hence in mixture, it will loose less temperature $\&$ final temperature will be nearer to $\mathrm{T}_\mathrm{w'}$