The statement $(p \wedge(\sim q) \vee((\sim p) \wedge q) \vee((\sim p) \wedge(\sim q))$ is equivalent to
$(\sim p) \vee(\sim q)$
$p \vee(\sim q)$
$(\sim p) \vee q$
$p \vee q$
The converse of the statement "If $p < q$, then $p -x < q -x"$ is -
Statement $\left( {p \wedge q} \right) \to \left( {p \vee q} \right)$ is
Negation of the statement $(p \vee r) \Rightarrow(q \vee r)$ is :
$\sim (p \vee (\sim q))$ is equal to .......
$\sim p \wedge q$ is logically equivalent to