The statement $(p \wedge(\sim q) \vee((\sim p) \wedge q) \vee((\sim p) \wedge(\sim q))$ is equivalent to

  • [JEE MAIN 2023]
  • A

    $(\sim p) \vee(\sim q)$

  • B

    $p \vee(\sim q)$

  • C

    $(\sim p) \vee q$

  • D

    $p \vee q$

Similar Questions

The converse of the statement "If $p < q$, then $p -x < q -x"$ is -

Statement $\left( {p \wedge q} \right) \to \left( {p \vee q} \right)$ is

Negation of the statement $(p \vee r) \Rightarrow(q \vee r)$ is :

  • [JEE MAIN 2021]

$\sim (p \vee (\sim q))$ is equal to .......

$\sim p \wedge q$ is logically equivalent to