Consider the following two statements :
$P :$  lf $7$  is an odd number, then $7$ is divisible by $2.$
$Q :$ If $7$ is a prime number, then $7$ is an odd number.
lf $V_1$ is the truth value of the contrapositive of $P$ and $V_2$ is the truth value of contrapositive of $Q,$ then the ordered pair  $(V_1, V_2)$  equals

  • [JEE MAIN 2016]
  • A

    $(F, F)$

  • B

    $(F, T)$

  • C

    $(T, F)$

  • D

    $(T, T)$

Similar Questions

Which Venn diagram represent the truth of the statement“All students are hard working.”

Where $U$ = Universal set of human being, $S$ = Set of all students, $H$ = Set of all hard workers.

$\sim (p \vee q)$ is equal to

Negation of $p \wedge( q \wedge \sim( p \wedge q ))$ is

  • [JEE MAIN 2023]

Statement$-I :$  $\sim (p\leftrightarrow q)$ is equivalent to $(p\wedge \sim  q)\vee \sim  (p\vee \sim  q) .$
Statement$-II :$  $p\rightarrow (p\rightarrow q)$ is a tautology.

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$ be four non-empty sets. The contrapositive statement of "If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D},$ then $\mathrm{A} \subseteq \mathrm{C}^{\prime \prime}$ is 

  • [JEE MAIN 2020]