Consider the following two statements :
$P :$ lf $7$ is an odd number, then $7$ is divisible by $2.$
$Q :$ If $7$ is a prime number, then $7$ is an odd number.
lf $V_1$ is the truth value of the contrapositive of $P$ and $V_2$ is the truth value of contrapositive of $Q,$ then the ordered pair $(V_1, V_2)$ equals
$(F, F)$
$(F, T)$
$(T, F)$
$(T, T)$
Which Venn diagram represent the truth of the statement“All students are hard working.”
Where $U$ = Universal set of human being, $S$ = Set of all students, $H$ = Set of all hard workers.
$\sim (p \vee q)$ is equal to
Negation of $p \wedge( q \wedge \sim( p \wedge q ))$ is
Statement$-I :$ $\sim (p\leftrightarrow q)$ is equivalent to $(p\wedge \sim q)\vee \sim (p\vee \sim q) .$
Statement$-II :$ $p\rightarrow (p\rightarrow q)$ is a tautology.
Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$ be four non-empty sets. The contrapositive statement of "If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D},$ then $\mathrm{A} \subseteq \mathrm{C}^{\prime \prime}$ is