Find the $20^{\text {th }}$ and $n^{\text {th }}$ terms of the $G.P.$ $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given $G.P.$ is $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots .$

Here, $a=$ First term $=\frac{5}{2}$

$r=$ Common ratio $=\frac{5 / 4}{5 / 2}=\frac{1}{2}$

$a_{20}=a r^{20-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{19}=\frac{5}{(2)(2)^{19}}=\frac{5}{(2)^{20}}$

$a_{n}=a r^{n-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{n-1}=\frac{5}{(2)(2)^{n-1}}=\frac{5}{(2)^{n}}$

 

Similar Questions

The value of $\overline {0.037} $ where,  $\overline {.037} $ stands for the number $0.037037037........$ is

If $2^{10}+2^{9} \cdot 3^{1}+28 \cdot 3^{2}+\ldots+2 \cdot 3^{9}+3^{10}=S -211$ then $S$ is equal to

  • [JEE MAIN 2020]

If the sum of $n$ terms of a $G.P.$ is $255$ and ${n^{th}}$ terms is $128$ and common ratio is $2$, then first term will be

If $a,b,c$ are in $A.P.$, then ${2^{ax + 1}},{2^{bx + 1}},\,{2^{cx + 1}},x \ne 0$ are in

Let $a_1, a_2, a_3, \ldots .$. be a sequence of positive integers in arithmetic progression with common difference $2$. Also, let $b_1, b_2, b_3, \ldots .$. be a sequence of positive integers in geometric progression with common ratio $2$ . If $a_1=b_1=c$, then the number of all possible values of $c$, for which the equality

$2\left(a_1+a_2+\ldots .+a_n\right)=b_1+b_2+\ldots . .+b_n$

holds for some positive integer $n$, is. . . . . . . 

  • [IIT 2020]