The sum of infinity of a geometric progression is $\frac{4}{3}$ and the first term is $\frac{3}{4}$. The common ratio is

  • A

    $7/16$

  • B

    $9/16$

  • C

    $1/9$

  • D

    $7/9$

Similar Questions

If $x,\,2x + 2,\,3x + 3,$are in $G.P.$, then the fourth term is

Suppose four distinct positive numbers $a_1, a_2, a_3, a_4$ are in $G.P.$ Let $b_1=a_1, b_2=b_1+a_2, b_3=b_2+a_3$ and $b_4=b_3+a_4$.

$STATEMENT-1$ : The numbers $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \mathrm{~b}_4$ are neither in $A.P$. nor in $G.P.$ and 

$STATEMENT-2$ : The numbers $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \mathrm{~b}_4$ are in $H.P.$

  • [IIT 2008]

If the sum of the $n$ terms of $G.P.$ is $S$ product is $P$ and sum of their inverse is $R$, than ${P^2}$ is equal to

  • [IIT 1966]

If three geometric means be inserted between $2$ and $32$, then the third geometric mean will be

$2.\mathop {357}\limits^{ \bullet \,\, \bullet \,\, \bullet } = $

  • [IIT 1983]