एक अनन्त गुणोत्तर श्रेणी का योग $\frac{4}{3}$ तथा प्रथम पद $\frac{3}{4}$ है तब सार्व-अनुपात है
$7/16$
$9/16$
$1/9$
$7/9$
एक व्यक्ति की दसवीं पीढ़ी तक पूर्वजों की संख्या कितनी होगी, जबकि उसके $2$ माता-पिता, $4$ दादा-दादी, $8$ पर दादा, पर दादी तथा आदि हैं।
$0.14189189189….$ को निम्न परिमेय संख्या के रूप में निरूपित कर सकते हैं
गुणोत्तर श्रेणी $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots$ का $20$ वाँ तथा $n$ वाँ पद ज्ञात कीजिए।
श्रेणी $9 - 3 + 1 - \frac{1}{3} + .....\infty$ का अनन्त पदों तक योगफल है
$0<\mathrm{c}<\mathrm{b}<\mathrm{a}$ के लिए माना $(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^2+(\mathrm{b}+\mathrm{c}-2 \mathrm{a}) \mathrm{x}+(\mathrm{c}+\mathrm{a}-2 \mathrm{~b})=0$ का एक मूल $\alpha \neq 1$ है। तो दो कथनों में
($I$) यदि $\alpha \in(-1,0)$ है, तो $a$ तथा $c$ का गुणोत्तर माध्य $b$ नहीं हो सकता।
($II$) यदि $\alpha \in(0,1)$ है, तो $\mathrm{a}$ तथा $\mathrm{c}$ का गुणोत्तर माध्य $\mathrm{b}$ हो सकता है।