The sum of squares of deviations for $10$ observations taken from mean $50$ is $250$. The co-efficient of variation is.....$\%$
$50$
$10$
$40$
None of these
In an experiment with $15$ observations on $x$, the following results were available $\sum {x^2} = 2830$, $\sum x = 170$. On observation that was $20$ was found to be wrong and was replaced by the correct value $30$. Then the corrected variance is..
Determine the mean and standard deviation for the following distribution:
$\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|} \hline \text { Marks } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ \hline \text { Frequency } & 1 & 6 & 6 & 8 & 8 & 2 & 2 & 3 & 0 & 2 & 1 & 0 & 0 & 0 & 1 \\ \hline \end{array}$
If the variance of observations ${x_1},\,{x_2},\,......{x_n}$ is ${\sigma ^2}$, then the variance of $a{x_1},\,a{x_2}.......,\,a{x_n}$, $\alpha \ne 0$ is
Let the mean and variance of $12$ observations be $\frac{9}{2}$ and $4$ respectively. Later on, it was observed that two observations were considered as $9$ and $10$ instead of $7$ and $14$ respectively. If the correct variance is $\frac{m}{n}$, where $m$ and $n$ are co-prime, then $m + n$ is equal to
Find the mean and variance of the frequency distribution given below:
$\begin{array}{|l|l|l|l|l|} \hline x & 1 \leq x<3 & 3 \leq x<5 & 5 \leq x<7 & 7 \leq x<10 \\ \hline f & 6 & 4 & 5 & 1 \\ \hline \end{array}$