${d \over {dx}}({x^2}{e^x}\sin x) = $

  • A
    $x\,{e^x}(2\sin x + x\sin x + x\cos x)$
  • B
    $x\,{e^x}(2\sin x + x\sin x - \cos x)$
  • C
    $x\,{e^x}(2\sin x + x\sin x + \cos x)$
  • D
    None of these

Similar Questions

The slope of the tangent to the curve $y = ln\, (cos\,x)$ a $x = \frac{3\pi}{4}$ is

The coordinates of a particle moving in $XY$-plane vary with time as $x=4 t ^2 ; y=2 t$. The locus of the particle is a :-

As $\theta$ increases from $0^{\circ}$ to $90^{\circ}$, the value of $\cos \theta$ :-

If $y = x\sin x,$then

If $y = {1 \over {a - z}},$then ${{dz} \over {dy}} = $