${d \over {dx}}({x^2}{e^x}\sin x) = $

  • A
    $x\,{e^x}(2\sin x + x\sin x + x\cos x)$
  • B
    $x\,{e^x}(2\sin x + x\sin x - \cos x)$
  • C
    $x\,{e^x}(2\sin x + x\sin x + \cos x)$
  • D
    None of these

Similar Questions

A particular straight line passes through origin and a point whose abscissa is double of ordinate of the point. The equation of such straight line is :

If $\tan \theta=\frac{1}{\sqrt{5}}$ and $\theta$ lies in the first quadrant, the value of $\cos \theta$ is :

If $F = \frac{2}{{\sin \,\theta  + \sqrt 3 \,\cos \,\theta }}$, then minimum value of $F$ is

The sum of the series $1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\ldots \ldots . \infty$ is

If $y = x + {1 \over x}$, then