- Home
- Standard 11
- Physics
Basic Maths
medium
${d \over {dx}}({x^2}{e^x}\sin x) = $
A$x\,{e^x}(2\sin x + x\sin x + x\cos x)$
B$x\,{e^x}(2\sin x + x\sin x - \cos x)$
C$x\,{e^x}(2\sin x + x\sin x + \cos x)$
DNone of these
Solution
(a) $\frac{d}{{dx}}\left( {{x^2}{e^x}\sin x} \right) = {x^2}\frac{d}{{dx}}\left( {{e^x}\sin x} \right)$$ + {e^x}\sin x\frac{d}{{dx}}({x^2})$
$ = x{e^x}(2\sin x + x\sin x + x\cos x)$.
$ = x{e^x}(2\sin x + x\sin x + x\cos x)$.
Standard 11
Physics