The sum of the series $\sum\limits_{r = 0}^n {{{( - 1)}^r}\,{\,^n}{C_r}\left( {\frac{1}{{{2^r}}} + \frac{{{3^r}}}{{{2^{2r}}}} + \frac{{{7^r}}}{{{2^{3r}}}} + \frac{{{{15}^r}}}{{{2^{4r}}}} + .....m\,{\rm{terms}}} \right)} $ is

  • A

    $\frac{{{2^{mn}} - 1}}{{{2^{mn}}({2^n} - 1)}}$

  • B

    $\frac{{{2^{mn}} - 1}}{{{2^n} - 1}}$

  • C

    $\frac{{{2^{mn}} + 1}}{{{2^n} + 1}}$

  • D

    None of these

Similar Questions

$2.{}^{20}{C_0} + 5.{}^{20}{C_1} + 8.{}^{20}{C_2} + 11.{}^{20}{C_3} + ......62.{}^{20}{C_{20}}$ is equal to

  • [JEE MAIN 2019]

The value of $\frac{{{C_1}}}{2} + \frac{{{C_3}}}{4} + \frac{{{C_5}}}{6} + .....$ is equal to

$2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + .... + \frac{{{2^{11}}}}{{11}}{C_{10}}$ = . . . 

The expression $x^3 - 3x^2 - 9x + c$ can be written in the form $(x - a)^2 (x - b)$ if the values of $c$ is

$\sum\limits_{k = 0}^{10} {^{20}{C_k} = } $