श्रेणी $\sum\limits_{r = 0}^n {{{( - 1)}^r}\,{\,^n}{C_r}\left( {\frac{1}{{{2^r}}} + \frac{{{3^r}}}{{{2^{2r}}}} + \frac{{{7^r}}}{{{2^{3r}}}} + \frac{{{{15}^r}}}{{{2^{4r}}}} + .....m\,inksa rd } \right)} $ का योगफल है

  • A

    $\frac{{{2^{mn}} - 1}}{{{2^{mn}}({2^n} - 1)}}$

  • B

    $\frac{{{2^{mn}} - 1}}{{{2^n} - 1}}$

  • C

    $\frac{{{2^{mn}} + 1}}{{{2^n} + 1}}$

  • D

    इनमें से कोई नहीं

Similar Questions

${C_0} - {C_1} + {C_2} - {C_3} + ..... + {( - 1)^n}{C_n}$ बराबर होगा

व्यंजक $(5+x)^{500}+x(5+x)^{499}+x^2(5+x)^{498}+\ldots . x^{500}$ $x > 0$ में $x ^{101}$ का गुणांक होगा -

  • [JEE MAIN 2022]

$^{15}C_0^2{ - ^{15}}C_1^2{ + ^{15}}C_2^2 - ....{ - ^{15}}C_{15}^2$ का मान है

यदि ${({\alpha ^2}{x^2} - 2\alpha {\rm{ }}x + 1)^{51}}$ के प्रसार में गुणांकों का योगफल $0$ है, तब  $\alpha $ का मान है

  • [IIT 1991]

यदि $\frac{{ }^{11} \mathrm{C}_1}{2}+\frac{{ }^{11} \mathrm{C}_2}{3}+\ldots . .+\frac{{ }^{11} \mathrm{C}_9}{10}=\frac{\mathrm{n}}{\mathrm{m}}$ है तथा $\operatorname{gcd}(\mathrm{n}, \mathrm{m})=1$ है, तो $\mathrm{n}+\mathrm{m}$ बराबर है ............ 

  • [JEE MAIN 2024]