The sum of three forces ${\vec F_1} = 100\,N,{\vec F_2} = 80\,N$ and ${\vec F_3} = 60\,N$ acting on a particle is zero. The angle between $\vec F_1$ and $\vec F_2$ is nearly .......... $^o$
$53$
$143$
$37$
$127$
The vectors $5i + 8j$ and $2i + 7j$ are added. The magnitude of the sum of these vector is
The five sides of a regular pentagon are represented by vectors $A _1, A _2, A _3, A _4$ and $A _5$, in cyclic order as shown below. Corresponding vertices are represented by $B _1, B _2, B _3, B _4$ and $B _5$, drawn from the centre of the pentagon.Then, $B _2+ B _3+ B _4+ B _5$ is equal to
$ABC$ is an equilateral triangle. Length of each side is $a$ and centroid is point $O$. Find If $|\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{A C}|=n a$ then $n =$ ?
Explain the analytical method for vector addition.
The magnitude of a given vector with end points $ (4, -4, 0)$ and $(-2, -2, 0)$ must be
Confusing about what to choose? Our team will schedule a demo shortly.