Explain the analytical method for vector addition.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is much easier to add vectors by combining their respective components.

Consider two vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ in $x y$-plane with components $\mathrm{A}_{x}, \mathrm{~A}_{y}$ and $\mathrm{B}_{x}, \mathrm{~B}_{y}$

$\therefore \overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}$

$\therefore \overrightarrow{\mathrm{B}}=\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}$

Let $\overrightarrow{\mathrm{R}}$ be their sum.

$\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$

$\therefore \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}\right)+\left(\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}\right)$

Since vectors obey the commutative and associative laws.

$\therefore \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x}+\mathrm{B}_{x}\right) \hat{i}+\left(\mathrm{A}_{y}+\mathrm{B}_{y}\right) \hat{j}$

$\therefore \overrightarrow{\mathrm{R}}=\mathrm{R}_{x} \hat{i}+\mathrm{R}_{y} \hat{j}$

$\mathrm{R}_{x}=\mathrm{A}_{x}+\mathrm{B}_{x}$

$\mathrm{R}_{y}=\mathrm{A}_{y}+\mathrm{B}_{y}$

Thus, each component of the resultant vector $\overrightarrow{\mathrm{R}}$ is the sum of the corresponding components of $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$.

It is much easier to add vectors by combining their respective components.

Consider two vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ in $x y$-plane with components $\mathrm{A}_{x}, \mathrm{~A}_{y}$ and $\mathrm{B}_{x}, \mathrm{~B}_{y}$

$\therefore \overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}$

$\therefore \overrightarrow{\mathrm{B}}=\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}$

Let $\overrightarrow{\mathrm{R}}$ be their sum.

$\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$

$\therefore  \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}\right)+\left(\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}\right)$

Since vectors obey the commutative and associative laws.

$\therefore \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x}+\mathrm{B}_{x}\right) \hat{i}+\left(\mathrm{A}_{y}+\mathrm{B}_{y}\right) \hat{j}$

$\therefore \overrightarrow{\mathrm{R}}=\mathrm{R}_{x} \hat{i}+\mathrm{R}_{y} \hat{j}$

$\mathrm{R}_{x}=\mathrm{A}_{x}+\mathrm{B}_{x}$

$\mathrm{R}_{y}=\mathrm{A}_{y}+\mathrm{B}_{y}$

Thus, each component of the resultant vector $\overrightarrow{\mathrm{R}}$ is the sum of the corresponding components of $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$

Similar Questions

What is the angle between $\overrightarrow P $ and the resultant of $(\overrightarrow P + \overrightarrow Q )$ and $(\overrightarrow P - \overrightarrow Q )$

 $\overrightarrow A \, = \,3\widehat i\, + \,2\widehat j$ , $\overrightarrow B \, = \widehat {\,i} + \widehat j - 2\widehat k$  then find their addition by algebric method.

The resultant of two vectors $\overrightarrow P $ and $\overrightarrow Q $ is $\overrightarrow R .$ If $Q$ is doubled, the new resultant is perpendicular to $P$. Then $R $ equals

A particle is situated at the origin of a coordinate system. The following forces begin to act on the particle simultaneously (Assuming particle is initially at rest)

${\vec F_1} = 5\hat i - 5\hat j + 5\hat k$            ${\vec F_2} = 2\hat i + 8\hat j + 6\hat k$

${\vec F_3} =  - 6\hat i + 4\hat j - 7\hat k$         ${\vec F_4} =  - \hat i - 3\hat j - 2\hat k$

Then the particle will move

The maximum and minimum magnitude of the resultant of two given vectors are $17 $ units and $7$ unit respectively. If these two vectors are at right angles to each other, the magnitude of their resultant is