Explain the analytical method for vector addition.
It is much easier to add vectors by combining their respective components.
Consider two vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ in $x y$-plane with components $\mathrm{A}_{x}, \mathrm{~A}_{y}$ and $\mathrm{B}_{x}, \mathrm{~B}_{y}$
$\therefore \overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}$
$\therefore \overrightarrow{\mathrm{B}}=\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}$
Let $\overrightarrow{\mathrm{R}}$ be their sum.
$\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$
$\therefore \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}\right)+\left(\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}\right)$
Since vectors obey the commutative and associative laws.
$\therefore \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x}+\mathrm{B}_{x}\right) \hat{i}+\left(\mathrm{A}_{y}+\mathrm{B}_{y}\right) \hat{j}$
$\therefore \overrightarrow{\mathrm{R}}=\mathrm{R}_{x} \hat{i}+\mathrm{R}_{y} \hat{j}$
$\mathrm{R}_{x}=\mathrm{A}_{x}+\mathrm{B}_{x}$
$\mathrm{R}_{y}=\mathrm{A}_{y}+\mathrm{B}_{y}$
Thus, each component of the resultant vector $\overrightarrow{\mathrm{R}}$ is the sum of the corresponding components of $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$.
It is much easier to add vectors by combining their respective components.
Consider two vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ in $x y$-plane with components $\mathrm{A}_{x}, \mathrm{~A}_{y}$ and $\mathrm{B}_{x}, \mathrm{~B}_{y}$
$\therefore \overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}$
$\therefore \overrightarrow{\mathrm{B}}=\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}$
Let $\overrightarrow{\mathrm{R}}$ be their sum.
$\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$
$\therefore \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}\right)+\left(\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}\right)$
Since vectors obey the commutative and associative laws.
$\therefore \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x}+\mathrm{B}_{x}\right) \hat{i}+\left(\mathrm{A}_{y}+\mathrm{B}_{y}\right) \hat{j}$
$\therefore \overrightarrow{\mathrm{R}}=\mathrm{R}_{x} \hat{i}+\mathrm{R}_{y} \hat{j}$
$\mathrm{R}_{x}=\mathrm{A}_{x}+\mathrm{B}_{x}$
$\mathrm{R}_{y}=\mathrm{A}_{y}+\mathrm{B}_{y}$
Thus, each component of the resultant vector $\overrightarrow{\mathrm{R}}$ is the sum of the corresponding components of $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$
A body is moving under the action of two forces ${\vec F_1} = 2\hat i - 5\hat j\,;\,{\vec F_2} = 3\hat i - 4\hat j$. Its velocity will become uniform under an additional third force ${\vec F_3}$ given by
If a particle moves from point $P (2,3,5)$ to point $Q (3,4,5)$. Its displacement vector be
A hall has the dimensions $10\,m \times 12\,m \times 14\,m.$A fly starting at one corner ends up at a diametrically opposite corner. What is the magnitude of its displacement...........$m$
In the cube of side $a$ shown in the figure, the vector from the central point of the face $ABOD$ to the central point of the face $BEFO$ will be
Six vectors, $\overrightarrow a$ through $\overrightarrow f$ have the magnitudes and directions indicated in the figure. Which of the following statements is true ?