Explain the analytical method for vector addition.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is much easier to add vectors by combining their respective components.

Consider two vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ in $x y$-plane with components $\mathrm{A}_{x}, \mathrm{~A}_{y}$ and $\mathrm{B}_{x}, \mathrm{~B}_{y}$

$\therefore \overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}$

$\therefore \overrightarrow{\mathrm{B}}=\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}$

Let $\overrightarrow{\mathrm{R}}$ be their sum.

$\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$

$\therefore \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}\right)+\left(\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}\right)$

Since vectors obey the commutative and associative laws.

$\therefore \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x}+\mathrm{B}_{x}\right) \hat{i}+\left(\mathrm{A}_{y}+\mathrm{B}_{y}\right) \hat{j}$

$\therefore \overrightarrow{\mathrm{R}}=\mathrm{R}_{x} \hat{i}+\mathrm{R}_{y} \hat{j}$

$\mathrm{R}_{x}=\mathrm{A}_{x}+\mathrm{B}_{x}$

$\mathrm{R}_{y}=\mathrm{A}_{y}+\mathrm{B}_{y}$

Thus, each component of the resultant vector $\overrightarrow{\mathrm{R}}$ is the sum of the corresponding components of $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$.

It is much easier to add vectors by combining their respective components.

Consider two vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ in $x y$-plane with components $\mathrm{A}_{x}, \mathrm{~A}_{y}$ and $\mathrm{B}_{x}, \mathrm{~B}_{y}$

$\therefore \overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}$

$\therefore \overrightarrow{\mathrm{B}}=\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}$

Let $\overrightarrow{\mathrm{R}}$ be their sum.

$\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$

$\therefore  \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}\right)+\left(\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}\right)$

Since vectors obey the commutative and associative laws.

$\therefore \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x}+\mathrm{B}_{x}\right) \hat{i}+\left(\mathrm{A}_{y}+\mathrm{B}_{y}\right) \hat{j}$

$\therefore \overrightarrow{\mathrm{R}}=\mathrm{R}_{x} \hat{i}+\mathrm{R}_{y} \hat{j}$

$\mathrm{R}_{x}=\mathrm{A}_{x}+\mathrm{B}_{x}$

$\mathrm{R}_{y}=\mathrm{A}_{y}+\mathrm{B}_{y}$

Thus, each component of the resultant vector $\overrightarrow{\mathrm{R}}$ is the sum of the corresponding components of $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$

Similar Questions

A body is moving under the action of two forces ${\vec F_1} = 2\hat i - 5\hat j\,;\,{\vec F_2} = 3\hat i - 4\hat j$. Its velocity will become uniform under an additional third force ${\vec F_3}$ given by

If a particle moves from point $P (2,3,5)$ to point $Q (3,4,5)$. Its displacement vector be

A hall has the dimensions $10\,m \times 12\,m \times 14\,m.$A fly starting at one corner ends up at a diametrically opposite corner. What is the magnitude of its displacement...........$m$

In the cube of side $a$ shown in the figure, the vector from the central point of the face $ABOD$ to the central point of the face $BEFO$ will be

  • [JEE MAIN 2019]

Six vectors, $\overrightarrow a$ through $\overrightarrow f$ have the magnitudes and directions indicated in the figure. Which of the following statements is true ?

  • [AIPMT 2010]