Explain the analytical method for vector addition.
It is much easier to add vectors by combining their respective components.
Consider two vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ in $x y$-plane with components $\mathrm{A}_{x}, \mathrm{~A}_{y}$ and $\mathrm{B}_{x}, \mathrm{~B}_{y}$
$\therefore \overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}$
$\therefore \overrightarrow{\mathrm{B}}=\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}$
Let $\overrightarrow{\mathrm{R}}$ be their sum.
$\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$
$\therefore \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}\right)+\left(\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}\right)$
Since vectors obey the commutative and associative laws.
$\therefore \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x}+\mathrm{B}_{x}\right) \hat{i}+\left(\mathrm{A}_{y}+\mathrm{B}_{y}\right) \hat{j}$
$\therefore \overrightarrow{\mathrm{R}}=\mathrm{R}_{x} \hat{i}+\mathrm{R}_{y} \hat{j}$
$\mathrm{R}_{x}=\mathrm{A}_{x}+\mathrm{B}_{x}$
$\mathrm{R}_{y}=\mathrm{A}_{y}+\mathrm{B}_{y}$
Thus, each component of the resultant vector $\overrightarrow{\mathrm{R}}$ is the sum of the corresponding components of $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$.
It is much easier to add vectors by combining their respective components.
Consider two vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ in $x y$-plane with components $\mathrm{A}_{x}, \mathrm{~A}_{y}$ and $\mathrm{B}_{x}, \mathrm{~B}_{y}$
$\therefore \overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}$
$\therefore \overrightarrow{\mathrm{B}}=\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}$
Let $\overrightarrow{\mathrm{R}}$ be their sum.
$\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$
$\therefore \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}\right)+\left(\mathrm{B}_{x} \hat{i}+\mathrm{B}_{y} \hat{j}\right)$
Since vectors obey the commutative and associative laws.
$\therefore \overrightarrow{\mathrm{R}}=\left(\mathrm{A}_{x}+\mathrm{B}_{x}\right) \hat{i}+\left(\mathrm{A}_{y}+\mathrm{B}_{y}\right) \hat{j}$
$\therefore \overrightarrow{\mathrm{R}}=\mathrm{R}_{x} \hat{i}+\mathrm{R}_{y} \hat{j}$
$\mathrm{R}_{x}=\mathrm{A}_{x}+\mathrm{B}_{x}$
$\mathrm{R}_{y}=\mathrm{A}_{y}+\mathrm{B}_{y}$
Thus, each component of the resultant vector $\overrightarrow{\mathrm{R}}$ is the sum of the corresponding components of $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$
$\overrightarrow A = 2\hat i + \hat j,\,B = 3\hat j - \hat k$ and $\overrightarrow C = 6\hat i - 2\hat k$.Value of $\overrightarrow A - 2\overrightarrow B + 3\overrightarrow C $ would be
There are two force vectors, one of $5\, N$ and other of $12\, N $ at what angle the two vectors be added to get resultant vector of $17\, N, 7\, N $ and $13 \,N$ respectively
Figure shows $ABCDEF$ as a regular hexagon. What is the value of $\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} $ (in $\overrightarrow {AO} $)
When $n$ vectors of different magnitudes are added, we get a null vector. Then the value of $n$ cannot be