The surface of a planet is found to be uniformly charged. When a particle of mass $m$ and no charge is thrown at an angle from the surface of the planet, it has a parabolic trajectory as in projectile motion with horizontal range $L$. A particle of mass $m$ and charge $q$, with the same initial conditions has a range $L / 2$. The range of particle of mass $m$ and charge $2 q$, with the same initial conditions is
$L$
$\frac{L}{2}$
$\frac{L}{3}$
$\frac{L}{4}$
A particle of mass $m$ and charge $(-q)$ enters the region between the two charged plates initially moving along $x$ -axis with speed $v_{x}$ (like particle $1$ in Figure). The length of plate is $L$ and an uniform electric field $E$ is maintained between the plates. Show that the vertical deflection of the particle at the far edge of the plate is $q E L^{2} /\left(2 m v_{x}^{2}\right)$
Compare this motion with motion of a projectile in gravitational field
An electric line of force in $X$, $Y-$ plane is given by $x^2+y^2 = 1$. A particle with unit positive charge, initially at rest at the point $x = 1, y = 0$ in the $X, Y-$ plane
Under the influence of the Coulomb field of charge $+Q$, a charge $-q$ is moving around it in an elliptical orbit. Find out the correct statement$(s)$.
An electron is released from the bottom plate $A$ as shown in the figure $(E = 10^4\, N/C)$. The velocity of the electron when it reaches plate $B$ will be nearly equal to
An electron falls through a small distance in a uniform electric field of magnitude $2 \times {10^4}N{C^{ - 1}}$. The direction of the field is reversed keeping the magnitude unchanged and a proton falls through the same distance. The time of fall will be