The surface of a planet is found to be uniformly charged. When a particle of mass $m$ and no charge is thrown at an angle from the surface of the planet, it has a parabolic trajectory as in projectile motion with horizontal range $L$. A particle of mass $m$ and charge $q$, with the same initial conditions has a range $L / 2$. The range of particle of mass $m$ and charge $2 q$, with the same initial conditions is

  • [KVPY 2011]
  • A

    $L$

  • B

    $\frac{L}{2}$

  • C

    $\frac{L}{3}$

  • D

    $\frac{L}{4}$

Similar Questions

Two identical positive charges are fixed on the $y$ -axis, at equal distances from the  origin $O$. A particle with a negative charge starts on the $x$ -axis at a large distance  from $O$, moves along the $+ x$ -axis, passes through $O$ and moves far away from $O$. Its acceleration $a$ is taken as positive in the positive $x$ -direction. The particle’s  acceleration a is plotted against its $x$ -coordinate. Which of the following best represents  the plot?

An electric line of force in $X$, $Y-$ plane is given by $x^2+y^2 = 1$. A particle with unit positive charge, initially at rest at the point $x = 1, y = 0$ in the $X, Y-$ plane

The electric field inside a spherical shell of uniform surface charge density is

Figure  shows tracks of three charged particles in a uniform electrostatic field. Give the signs of the three charges. Which particle has the highest charge to mass ratio?

An electron enters a parallel plate capacitor with horizontal speed $u$ and is found to deflect by angle $\theta$ on leaving the capacitor as shown below. It is found that $\tan \theta=0.4$ and gravity is negligible. If the initial horizontal speed is doubled, then the value of $\tan \theta$ will be

  • [KVPY 2014]