The system of equations : $2x\, \cos^2\theta + y\, \sin2\theta - 2\sin\theta = 0$ $x\, \sin2\theta + 2y\, \sin^2\theta = - 2\, \cos\theta$ $x\, \sin\theta - y \cos\theta = 0$ , for all values of $\theta$ , can
have a unique non - trivial solution
not have a solution
have infinite solutions
have a trivial solution
The value of $\lambda$ and $\mu$ such that the system of equations $x+y+z=6,3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ has no solution, are :
For what value of $k$ to the following system of equations possess a non-trivial solution ?
$x + ky + 3z = 0$ ; $3x + ky + 2z = 0$ ; $2x + 3y + 4z = 0$
The existence of the unique solution of the system $x + y + z = \lambda ,$ $5x - y + \mu z = 10$, $2x + 3y - z = 6$ depends on
If $\left| {\begin{array}{*{20}{c}}{a\, + \,1}&{a\, + \,2}&{a\, + \,p}\\{a\, + \,2}&{a\, +\,3}&{a\, + \,q}\\{a\, + \,3}&{a\, + \,4}&{a\, + \,r}\end{array}} \right|$ $= 0$ , then $p, q, r$ are in :
If the system of linear equations $x-2 y+z=-4 $ ; $2 x+\alpha y+3 z=5 $ ; $3 x-y+\beta z=3$ has infinitely many solutions, then $12 \alpha+13 \beta$ is equal to