3 and 4 .Determinants and Matrices
easy

Let $A=\left(\begin{array}{cc}4 & -2 \\ \alpha & \beta\end{array}\right)$ . If $A ^{2}+\gamma A +18 I = O$, then $\operatorname{det}( A )$ is equal to

A

$-18$

B

$18$

C

$-50$

D

$50$

(JEE MAIN-2022)

Solution

The characteristic equation for $A$ is $| A -\lambda I |=0$

$\left|\begin{array}{cc}4-\lambda & -2 \\ \alpha & \beta-\lambda\end{array}\right|=0$

$(4-\lambda)(\beta-\lambda)+2 \alpha=0$

$\lambda^{2}-(\beta+4) \lambda+4 \beta+2 \alpha=0$

Put $\lambda= A$

$A^{2}-(\beta+4) A+(4 \beta+2 \alpha) I=0$

On comparison $-9(\beta+4)=\gamma \& 4 \beta+2 \alpha=18$

and $| A |=4 \beta+2 \alpha=18$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.