The system of equations $kx + 2y\,-z = 1$  ;  $(k\,-\,1)y\,-2z = 2$  ;  $(k + 2)z = 3$ has unique solution, if $k$ is equal to

  • A

    $-2$

  • B

    $-1$

  • C

    $0$

  • D

    $1$

Similar Questions

If ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
  r&{2r - 1}&{3r - 2} \\ 
  {\frac{n}{2}}&{n - 1}&a \\ 
  {\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)} 
\end{array}} \right|$ then the value of $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $

  • [JEE MAIN 2014]

Let $\alpha, \beta, \gamma$ be the real roots of the equation, $x ^{3}+ ax ^{2}+ bx + c =0,( a , b , c \in R$ and $a , b \neq 0)$ If the system of equations (in, $u,v,w$) given by $\alpha u+\beta v+\gamma w=0, \beta u+\gamma v+\alpha w=0$ $\gamma u +\alpha v +\beta w =0$ has non-trivial solution, then the value of $\frac{a^{2}}{b}$ is

  • [JEE MAIN 2021]

Let $\alpha \beta \neq 0$ and $A=\left[\begin{array}{ccc}\beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2 \alpha\end{array}\right]$. If $B=\left[\begin{array}{ccc}3 \alpha & -9 & 3 \alpha \\ -\alpha & 7 & -2 \alpha \\ -2 \alpha & 5 & -2 \beta\end{array}\right]$ is the matrix of cofactors of the elements of $A$, then $\operatorname{det}(A B)$ is equal to.

  • [JEE MAIN 2024]

If $\alpha , \beta \, and \, \gamma$ are real numbers , then $D = \left|{\begin{array}{*{20}{c}}1&{\cos \,(\beta \, - \,\alpha )}&{\cos \,(\gamma \, - \,\alpha )}\\{\cos \,(\alpha \, - \,\beta )}&1&{\cos \,(\gamma \, - \,\beta )}\\{\cos \,(\alpha \, - \,\gamma )}&{\cos \,(\beta \, - \,\gamma )}&1 \end{array}} \right|$ =

The value of $\lambda$ and $\mu$ such that the system of equations $x+y+z=6,3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ has no solution, are :

  • [JEE MAIN 2021]