$\left| {\begin{array}{*{20}{c}}0&a&{ - b}\\{ - a}&0&c\\b&{ - c}&0\end{array}} \right| = $
$ - 2abc$
$abc$
$0$
${a^2} + {b^2} + {c^2}$
For $\alpha, \beta \in \mathrm{R}$ and a natural number $\mathrm{n}$, let
$A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$. Then $2 A_{10}-A_8$
Let $S$ be the set of all values of $\theta \in[-\pi, \pi]$ for which the system of linear equations
$x+y+\sqrt{3} z=0$
$-x+(\tan \theta) y+\sqrt{7} z=0$
$x+y+(\tan \theta) z=0$
has non-trivial solution. Then $\frac{120}{\pi} \sum_{\theta \in s} \theta$ is equal to
Let $A =$ $\left[ {\begin{array}{*{20}{c}}1&{\sin \theta }&1\\{ - \sin \theta }&1&{\sin \theta }\\{ - 1}&{ - \sin \theta }&1\end{array}} \right]$, where $0 \le \theta < 2\pi$ , then
Find equation of line joining $(3,1)$ and $(9,3)$ using determinants
If $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = k(a + b + c)({a^2} + {b^2} + {c^2}$ $ - bc - ca - ab)$, then $k =$