The sum of distinct values of $\lambda$ for which the system of equations
$(\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0$
$(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0$
$2 x+(3 \lambda+1) y+3(\lambda-1) z=0$
has non-zero solutions, is
$3$
$0$
$6$
$9$
The system of equations : $2x\, \cos^2\theta + y\, \sin2\theta - 2\sin\theta = 0$ $x\, \sin2\theta + 2y\, \sin^2\theta = - 2\, \cos\theta$ $x\, \sin\theta - y \cos\theta = 0$ , for all values of $\theta$ , can
If the system of linear equations
$2 x+y-z=3$
$x-y-z=\alpha$
$3 x+3 y+\beta z=3$
has infinitely many solution, then $\alpha+\beta-\alpha \beta$ is equal to .... .
If the system of equations $\alpha x+y+z=5, x+2 y+$ $3 z=4, x+3 y+5 z=\beta$ has infinitely many solutions, then the ordered pair $(\alpha, \beta)$ is equal to:
If $\left| {\,\begin{array}{*{20}{c}}{x - 1}&3&0\\2&{x - 3}&4\\3&5&6\end{array}\,} \right| = 0$, then $x =$