The sum of distinct values of $\lambda$ for which the system of equations

$(\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0$

$(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0$

$2 x+(3 \lambda+1) y+3(\lambda-1) z=0$

has non-zero solutions, is

  • [JEE MAIN 2020]
  • A

    $3$

  • B

    $0$

  • C

    $6$

  • D

    $9$

Similar Questions

Evaluate the determinants

$\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$

Consider the system of linear equations ${a_1}x + {b_1}y + {c_1}z + {d_1} = 0$, ${a_2}x + {b_2}y + {c_2}z + {d_2} = 0$ and ${a_3}x + {b_3}y + {c_3}z + {d_3} = 0$. Let us denote by $\Delta (a,b,c)$ the determinant $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$ if $\Delta (a,b,c) \ne 0$, then the value of $x$ in the unique solution of the above equations is

Evaluate the determinants : $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$

The roots of the equation $\left| {\,\begin{array}{*{20}{c}}x&0&8\\4&1&3\\2&0&x\end{array}\,} \right| = 0$ are equal to

If $q_1$ , $q_2$ , $q_3$ are roots of the equation $x^3 + 64$ = $0$ , then the value of $\left| {\begin{array}{*{20}{c}}
  {{q_1}}&{{q_2}}&{{q_3}} \\ 
  {{q_2}}&{{q_3}}&{{q_1}} \\ 
  {{q_3}}&{{q_1}}&{{q_2}} 
\end{array}} \right|$ is