- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
hard
निकाय ${x_1} - {x_2} + {x_3} = 2,$ $\,3{x_1} - {x_2} + 2{x_3} = - 6$ व $3{x_1} + {x_2} + {x_3} = - 18$ के हलों की संख्या होगी
A
कोई हल नहीं
B
केवल एक हल
C
अनन्त हल
D
इनमें से कोई नहीं
Solution
(c) $D = \left| {\,\begin{array}{*{20}{c}}1&{ – 1}&1\\3&{ – 1}&2\\3&1&1\end{array}\,} \right|\, = \,1[ – 1 – 2] – 1[6 – 3] + 1[3 + 3] = 0$
${D_1} = \left| {\,\begin{array}{*{20}{c}}2&{ – 1}&1\\{ – 6}&{ – 1}&2\\{ – 18}&1&1\end{array}\,} \right|\, = 2( – 1 – 2) – 1( – 36 + 6) + 1( – 6 – 18)$
${D_1}$ $ = – 6 + 30 – 24 = 0$
तथा ${D_2} = 0;\,{D_3} = 0$
इसलिए निकाय संगत है, $(D = {D_1} = {D_2} = {D_3} = 0)$
अर्थात् निकाय के अनन्त हल हैं।
Standard 12
Mathematics