निकाय ${x_1} - {x_2} + {x_3} = 2,$ $\,3{x_1} - {x_2} + 2{x_3} = - 6$ व $3{x_1} + {x_2} + {x_3} = - 18$ के हलों की संख्या होगी
कोई हल नहीं
केवल एक हल
अनन्त हल
इनमें से कोई नहीं
माना $\alpha, \beta, \gamma$ समीकरण $x ^{3}+ ax ^{2}+ bx + c =0$, $(a, b, c \in R$ तथा $a, b \neq 0)$ के वास्तविक मूल हैं। यदि $u , v , w$ में समीकरण निकाय $\alpha u +\beta v +\gamma w =0$, $\beta u+\gamma v+\alpha w=0 ; \gamma u+\alpha v+\beta w=0$ का अतुच्छ हल है, तो $\frac{a^{2}}{b}$ का मान है
$\lambda$ के उन वास्तविक मानों की संख्या जिनके लिए रैखिक समीकरण निकाय $2 x+4 y-\lambda z=0$; $4 x+\lambda y+2 z=0$; $\lambda x+2 y+2 z=0$ के अनंत हल हैं
यदि समीकरणों के निकाय $\begin{array}{l}\alpha x + y + z = \alpha - 1\\x + \alpha y + z = \alpha - 1\\x + y + \alpha z = \alpha - 1\end{array}$ का कोई हल नहीं है, तब $\alpha $ का मान है
$c \in R$ का अधिकतम मान, जिसके लिए रैखिक समीकरण निकाय $x-c y-c z=0$, $c x-y+c z=0$, $c x+c y-z=0$ का एक अतुच्छ हल है, है -
यदि $\left| {\,\begin{array}{*{20}{c}}{a + x}&{a - x}&{a - x}\\{a - x}&{a + x}&{a - x}\\{a - x}&{a - x}&{a + x}\end{array}\,} \right| = 0$ तो $x$ के मान होंगे