क्रमित युग्म $( a , b )$ जिसके लिये रेखीय समीकरण
निकाय
$3 x -2 y + z = b$
$5 x -8 y +9 z =3$
$2 x + y + az =-1$
का कोई हल नहीं है, होगा:
$\left(3, \frac{1}{3}\right)$
$\left(-3, \frac{1}{3}\right)$
$\left(-3,-\frac{1}{3}\right)$
$\left(3,-\frac{1}{3}\right)$
रैखिक समीकरण निकाय $\mathrm{ax}+\mathrm{y}+\mathrm{z}=1$, $x+a y+z=1, x+y+a z=\beta$ के लिए निम्न में से कौनसा कथन सही नहीं है ?
यदि $a_{r}=\cos \frac{2 r \pi}{9}+i \sin \frac{2 r \pi}{9}, \quad r=1,2,3, \ldots$, $i=\sqrt{-1}$, तो सारणिक $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$ बराबर है
सारणिक $\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ निम्न के द्वारा विभाज्य नहीं है
यदि $\left| {\,\begin{array}{*{20}{c}}{{x^2} + x}&{x + 1}&{x - 2}\\{2{x^2} + 3x - 1}&{3x}&{3x - 3}\\{{x^2} + 2x + 3}&{2x - 1}&{2x - 1}\end{array}\,} \right| = Ax - 12$, तो $ A$ का मान है
यदि ${a_1},{a_2},{a_3}.....{a_n}....$ गुणोत्तर श्रेणी में हैं, तब सारणिक $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ का मान होगा