The system of equations $(\sin\theta ) x + 2z = 0$ , $(\cos\theta ) x + (\sin\theta )y = 0$ , $(\cos\theta )y + 2z = a$ has

  • A
    no unique solution
  • B
    $a$ unique solution which is a function of $a$ and $\theta$
  • C
    $a$ unique solution which is independent of $a$ and $\theta$
  • D
    $a$ unique solution which is independent of $\theta$ only

Similar Questions

If the system of equations

$2 x+y-z=5$

$2 x-5 y+\lambda z=\mu$

$x+2 y-5 z=7$

has infinitely many solutions, then $(\lambda+\mu)^2+(\lambda-\mu)^2$ is equal to

  • [JEE MAIN 2023]

Let $S_1$ and $S_2$ be respectively the sets of all $a \in R -\{0\}$ for which the system of linear equations

$a x+2 a y-3 a z=1$

$(2 a+1) x+(2 a+3) y+(a+1) z=2$

$(3 a+5) x+(a+5) y+(a+2) z=3$

has unique solution and infinitely many solutions. Then

  • [JEE MAIN 2023]

The system of equations $4x + y - 2z = 0\ ,\ x - 2y + z = 0$ ; $x + y - z =0 $ has

The number of real values of $\lambda $ for which the system of linear equations $2x + 4y - \lambda  z = 0$ ;$4x + \lambda y + 2z = 0$ ; $\lambda x + 2y+ 2z = 0$ has infinitely many solutions, is

  • [JEE MAIN 2017]

Consider the system of linear equation $x+y+z=$ $4 \mu, x+2 y+2 \lambda z=10 \mu, x+3 y+4 \lambda^2 z=\mu^2+15$, where $\lambda, \mu \in R$. Which one of the following statements is $NOT$ correct?

  • [JEE MAIN 2024]