The least value of the product $xyz$ for which the determinant $\left| {\begin{array}{*{20}{c}}
x&1&1 \\
1&y&1 \\
1&1&z
\end{array}} \right|$ is non-negative, is
$-2\sqrt 2$
$-1$
$-16\sqrt 2$
$-8$
If the system of equations $2x + 3y - z = 0$, $x + ky - 2z = 0$ and $2x - y + z = 0$ has a non -trivial solution $(x, y, z)$, then $\frac{x}{y} + \frac{y}{z} + \frac{z}{x} + k$ is equal to
$\left| {\,\begin{array}{*{20}{c}}x&4&{y + z}\\y&4&{z + x}\\z&4&{x + y}\end{array}\,} \right| = $
Let $d \in R$, and $A = \left[ {\begin{array}{*{20}{c}} { - 2}&{4 + d}&{\left( {\sin \,\theta } \right) - 2}\\ 1&{\left( {\sin \,\theta } \right) + 2}&d\\ 5&{\left( {2\sin \,\theta } \right) - d}&{\left( { - \sin \,\theta } \right) + 2 + 2d} \end{array}} \right]$, $\theta \in \left[ {0,2\pi } \right]$. If the minimum value of det $(A)$ is $8$, then a value of $d$ is
If $\Delta = \left| {\,\begin{array}{*{20}{c}}x&y&z\\p&q&r\\a&b&c\end{array}\,} \right|,$ then $\left| {\,\begin{array}{*{20}{c}}x&{2y}&z\\{2p}&{4q}&{2r}\\a&{2b}&c\end{array}\,} \right|$equals
Let $P $ and $Q $ be $3×3$ matrices $P \ne Q$. If ${P^3} = {Q^3},{P^2}Q = {Q^2}P$ then determinant of $\det \left( {{P^2} + {Q^2}} \right)$ is equal to :